
River Landscapes **DRAINAGE BASIN**

An area of land drained by a river an it's tributaries.

What are the Features of Drainage basins?

Watershed: Highland or hill that separates one drainage basin from another

- Confluence: the point where two rivers/streams meet/join
- Tributary: a smaller stream or river that joins a bigger stream or river Source: the starting point of a river or stream
- Mouth: the point where a river leaves the drainage basin

PHYSICAL PROCESSES

Weathering:

Weathering is the breakdown of rock by natural processes. There are three key weathering processes that affect river valley's: Water enters cracks in rocks and freezes when temperatures drop below zero: Mechanical the water expands, putting pressure on the rock. This process of expanding and (Freeze-thaw) contracting causes the rock to break into smaller pieces Slightly acidic rainfall, polluted by factories and vehicles, reacts with weak Chemical (acid rain) minerals causing them to dissolve and decay The roots of plants grow in cracks and split the rock apart. Or burrowing ani-Biological mals break up rocks weathering Mass movement: Mass movement is the transfer of material down the valley/slope

due to gravity. Soil creep Individual particles soil move slowly down a slope due to gravity At the bottom of a valley slope the river erodes the valley side. Material above Slumping slides downwards rotating as it does often after times of heavy rain saturating the rock and soil making it heavy

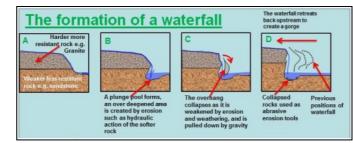
A slide happens when a section of soil or rock suddenly gives way and moves down a slope. The material moves as a single mass along a slippery zone. The slippery zone is often made up of wet sediment. Sliding

<u>River erosion:</u>

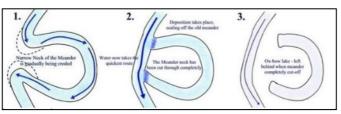
The action of water wearing away rocks and soil. There are four key processes of erosion.

Abrasion	Load is dragged by water wearing away the banks and bed of the river and causes most erosion	
Attrition	Attrition Load collides with load and wears down/breaks up	
Solution	Solution Weak acid dissolves rocks such as Limestone	
Hydraulic action	The shear force of the water trapping air in cracks fracturing the rock on the banks and bed of the river	

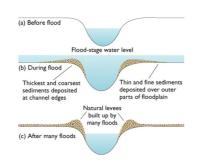
Transportation


Deposition:

When a river loses it's energy deposition occurs. Heaviest material is deposited (dropped) first.


INTERLOCKING SPURS-UPPER COURSE

At the source rivers have less power and flow around hard rock valley slopes (spurs) instead of eroding them. The spurs then inter-lock from one side to the other.

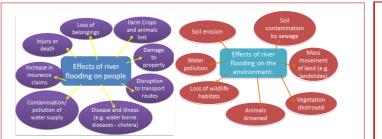

WATERFALLS-UPPER COURSE

MEANDERS AND OX BOW LAKES-MIDDLE COURSE

LEVEE AND FLOODPLAINS-LOWER COURSE

DELTA-LOWER COURSE

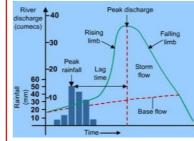
Water speed decreases near the sea. Material is deposited. Over time this builds up to create an area of new land - a delta. Deltas Because the river is now flowing slowly the channel fills up with sediment and the river splits into different streams, distributaries.


THE COURSE OF THE RIVER

The long profile of a river change s according to the Bradshaw model

V shaped valley, interlocking spurs, waterfalls	Mid-course Meanders	Meanders, ox bow lakes, flood plain, levees, delta
Upper course	Middle course	Lower course
Shallow Narrow Slow flowing Little erosive power Angular rocks/sediment Large sediment size Small discharge	Reasonably deep Reasonably wide Increasing velocity Some erosive power Some angular and rounded rocks/ sediment Average sediment size Increasing discharge	Deep Wide Fast flowing Great erosive power Rounded rocks/sediment Small sediment size Large discharge

IMPACTS OF RIVER FLOODING



HOW DOES THE ENVIRONMENT AGENCY MANAGE FLOOD RISK?

The Environment Agency makes Catchment Management Plans, manages rivers and land use, controlling developments in flood plains, building flood defences as well as helping people to prepare and giving warnings.

PHYSICAL AND HUMAN FACTORS AFFECT HYDROGRAPHS

Rising limb = indicates discharge increases a few hours after rainfall. Peak flow = Discharge reaches max levels.

Recession (falling) limb = indicates a fall in discharge once the water has passed downstream.

Lag time = time from peak rainfall to peak discharge

A hydrograph is a way of showing how a river responds to a rainfall event showing the relationship between rainfall (mm) and discharge (m3/cumecs).

	Drange tasis A	140 120 Pask antal			faster.			
		100		Soft engineer flooding.	o control river			
				Method	Describe	Advantage	Disad	
Precipitation	Heavy, rapid rainfall or snow melt	Gentle rainfall or snow melt		Washlands Floodplain zoning	Low value areas of	Deposited silt	Land is lost.	
Geology	Impermeable rock	Permeable rock			land are allowed to	may enrich soil. Cost effective.	Can not be built on.	
Drainage basin size	Small, with lots of tributaries, so rain reaches river quickly	Wide and elongated drainage basin, so rain reaches river slowly				flood.		
Soil, slopes	saturated, impermeable rocks such as clays; steep slopes	Permeable rock allowing infiltration, such as sandy materials; gentle slopes			ning introduce policies	Cost effective.	Does not help the	
vegetation	Deforested area, very little inter- ception	Large woodlands intercept large amounts of rainfall			on where to build.		housing shortage.	
Towns/cities	Urban areas, Impermeable surfaces	Rural areas, permeable surfaces		WUAT DE	CISIONS ARE MAD		DING	
Antecedent conditions	Heavy rainfall, saturated land	Little rainfall, capacity to soak up rain		FLOOD DE				

HUMAN AND PHYSICAL CAUSE OF FLOODING

Human Causes	Physical causes
 urbanisation, because towns and cities have more imper- meable surfaces deforestation, because removing trees reduces the amount of wa- ter intercepted and in- creases run-off Climate change, leading to increased snow melting Climate change leading to extreme weather conditions Poor dam construction 	 heavy rainfall/long periods of rain snowmelt steep slopes impermeable rock (doesn't allow water through) very wet, saturated soils

INCREASING UK FLOOD RISK

Flooding is a natural occurrence but since 1998 severe flooding has occurred somewhere in the UK every year sometimes twice in a year. The main reasons for this are as follows:

1. Increased population = more housing. Building on the cheaper land of the flood plain has put 2.3 million houses at risk of flooding.

2. Land use changes with urban developments = more impermeable surfaces which increases surface run-off.

PIVER MANAGEMENT

Hard engineering—Involves building artificial structures which try to control rivers.

Method	Description	Advantage	Disad
Dams and reservoirs	Large concrete walls build across the riv- er. Water is stored behind the dam and the discharge is con- trolled.	Can gener- ate HEP. Long lasting and effec- tive.	Disturbs ani- mal habitats. Settlements and farmland lost. Extremely expensive.
Channelisa- tion	The river is widened and deepened so it can carry more wa- ter. The river can also be straightened so water moves through the area faster.	Long lasting and requires minimal mainte- nance.	Unnatural and visually intru- sive. Greater risk of flood- ing down- stream.

Because flood defences are so expensive the EA works out which would be most effective with limited environmental damage by conducting an impact assessment (residents, business, transport, wildlife and habitats) and a cost -benefit analysis (value for money). In 2000, severe flooding of the river Severn affected 140 in Bewdley so local residents and businesses want to improve the flood defences. The EA worked a number of possible options including the costs and benefits:

Costs	Benefits
Do nothing therefore £0 Maintenance of banks £0.2m Storage dams 1km up- stream £15m Demountable aluminium flood defences, 2.7m high costing £6.9m	Little benefit except £0 spent Bank collapse prevented Volume of water retained wouldn't prevent a 100yr event £0.5m 150 properties protected, 24hr warning required £7.5million